

How to Operate a Telescope Without Operating a Telescope

Daniel Wagner

Based on a IMC'23 paper

How to Operate a Meta-Telescope in your Spare Time

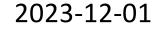
Daniel Wagner' Sahil Ashish Ranadive DE-CIX Georgia Institute of Technolog Max Planck Institute for Informatics

Sahil Ashish Ranadive Harm Griffioen Georgia Institute of Technology Delft University of Technology

Michalis Kallitsis Alberto Dainotti Merit Network, Inc. Georgia Institute of Technology

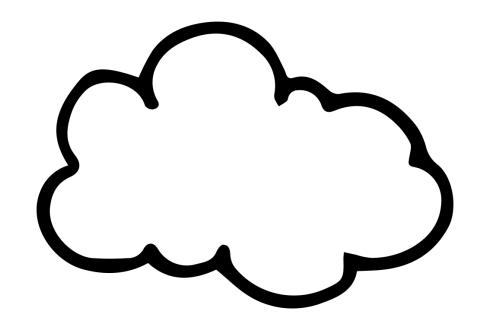
te of Technology Delft University of Technology

Anja Feldmann Max Planck Institute for Informatics Montreal, QC, Canada, ACM, Nev 10.1145/3618257.3624831

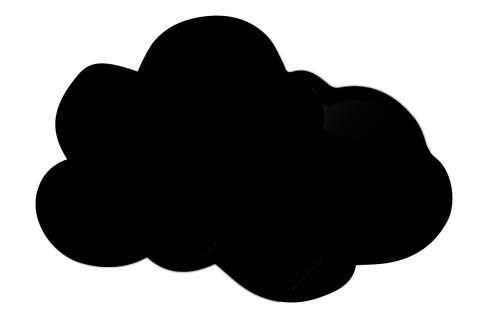

ABSTRACT

To another tardie sent to advectised network space that does not built activity environment of the sentence o

1 INTRODUCTION A natwork elsespone, or simply therecope, is an infrastructure that passively monitors traffic reaching Internet address space that is not assigned to any basts but is advertised to the global noting system (i.e., *dark address* space). This traffic is by definition any elicited (also known as Internet background radiation-BBR) and is constituted of an evolving mix of diverse traffic components originating from access the whole literate [7]. Over the years, researchers have been finding ways to extract insights into varsus Internet properties and phenomena from IBR, such as, e.g., identifying misconfigurations [7] and large-scale nucleous activ-(s [2], 35-37, 49], immunitie fiberance isomethylin [22], informing


Montreal, QC, Canada. ACM, New York, NY, USA, 16 pages. https://doi.org/

Georgios Smaragdakis



RIPE87, Rome

Announced IP space

- Announced IP space
 - Unused
 - Do not expect to see any traffic

- Announced IP space
 - Unused
 - Do not expect to see any traffic
- Receives traffic, so called Internet Background Radiation (IBR)


Let's

scan

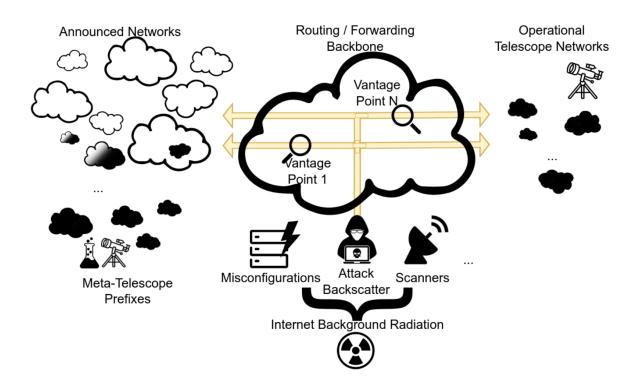
0.0.0.0/0

- Announced IP space
 - Unused
 - Do not expect to see any traffic
- Receives traffic, so called Internet Background Radiation (IBR)
- Analogy to real "telescopes"

Internet Telescopes: Security Use Cases

- Obtain insights about recent scans
 - Who is scanning?
 - What ports are being scanned?
 - How many scanners are there?
 - Where are they coming from?
- Attack vector insights and prevention

[2] David Moore et al., IEEE Security and Privacy, "The Spread of the Witty Worm", 2005


[3] David Moore et al., ACM IMC Workshop, "Code Red: A Case Study of the Spread and the Victims of an Internet Worm", 2002

[4] Stuart Staniford et al., ACM WORM, "The Speed of Flash Worms", 2004

^[1] David Moore et al., IEEE Security and Privacy, "Inside the Slammer Worm", 2003

Can You Run a Telescope without Owning a Prefix?

- Scans run through the Internet
 - Also through, e.g., IXPs
 - Advantage: visibility not limited to any announcement

Use telescopes to infer characteristics

Develop methodology to detect scanned unused IP space ("meta-telescopes prefixes") at IXPs

Overcome limitations of typical telescopes

- 1. Multiple prefix: evade blocklisting
- 2. Multiple ASes: evade network type bias
- 3. Multiple countries: evade locality bias

- Telescope Data set
 - Full packets (.pcap)
 - 3 telescopes
 - 2x Europe (TEU1, TEU2)
 - 1x USA (TUS1)
 - Various prefix sizes
- Observation period:
 - 2023-04-24 (24 hours)

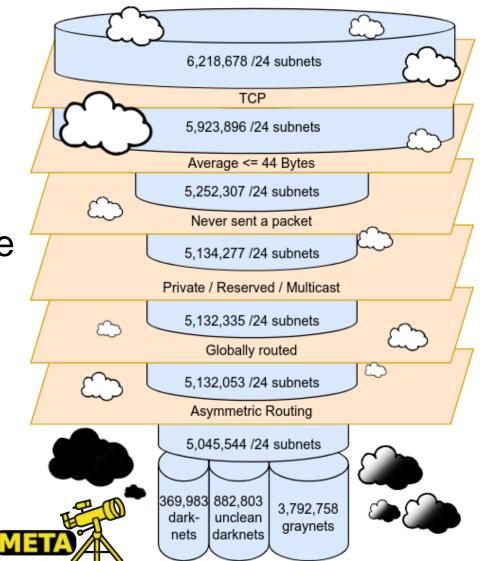
- Outbound:
 - Nothing

- Outbound:
 - Nothing
- Inbound:
 - ~90% TCP SYN
 - 20B IP header + 20B TCP header (+ 8B for one option)
 - Sensitivity analysis on packet size

- Outbound:
 - Nothing
- Inbound:
 - ~90% TCP SYN
 - 20B IP header + 20B TCP header (+ 8B for one option)
 - Sensitivity analysis on packet size -> Avg. of 44B

- Outbound:
 - Nothing
- Inbound:
 - ~90% TCP SYN
 - 20B IP header + 20B TCP header (+ 8B for one option)
 - Sensitivity analysis on packet size -> Avg. of 44B
 - Receiving no more than 1.7M packets per day and /24

Unused IP Space Inference


Data set

- 14 IXPs
 - Spread across Europe, North America, and Asia
 - Diverse member counts & peak traffic volumes
- Sampled flow data

Observation period: 2023-04-24 (24 hours)

Unused IP Space Inference

- Filter 1: TCP*
- Filter 2: Average <=44 Bytes
- Filter 3: No outbound traffic
- Filter 4: Reserved / private space
- Filter 5: Globally routed**
- Filter 6: Packet count < 1.7M

* We can't check for TCP flags

** According to Routeviews

• Vantage point diversity:

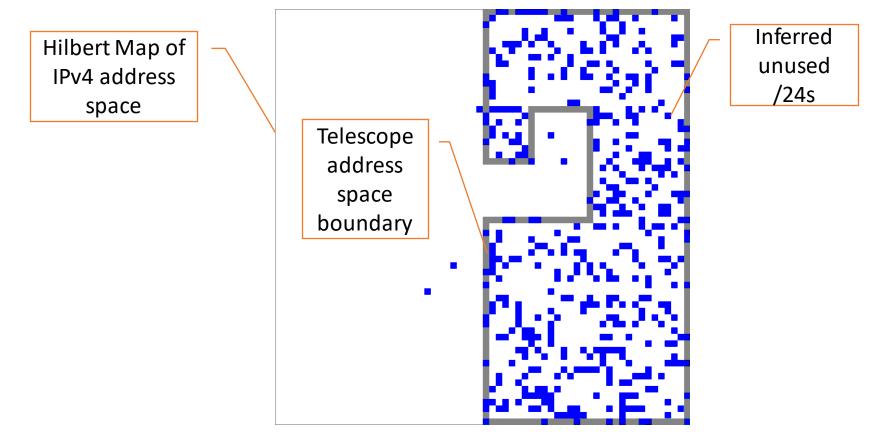
	IXP		#Inferred meta-telescope prefixes	#ASes	#Countries
	CE1	1	397,000	8,529	201
	CE2	1	21,340	1,597	124
	CE3		61,607	3,982	173
	CE4		2,178	455	84
	NA1		395,585	8,960	198
	NA2		12,489	919	102
	NA3		262	128	17
	NA4		1,054	299	74
	SF1		34,222	2,269	152
Combining IXP of	lata		56,638	2,078	132
increases chance			3,782	729	97
contain violating			43,573	2,431	152
packets	Ŭ		1,949	667	104
•			270	104	33
	All		318,646	7,195	194

• Vantage point diversity:

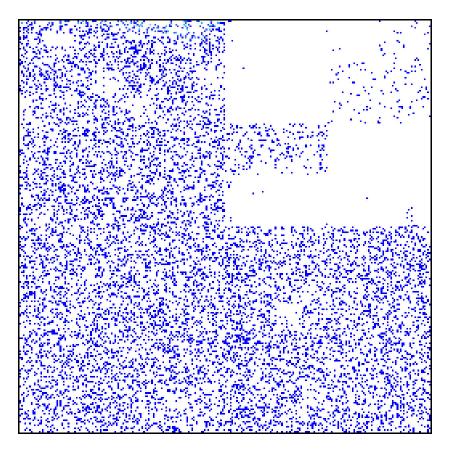
IXP	#Inferred meta-telescope	#ASes	#Countries
	prefixes		
CE1	397,000	8,529	201
CE2	21,340	1,597	124
CE3	61,607	3,982	173
CE4	2,178	455	84
NA1	395,585	8,960	198
NA2	12,489	919	102
NA3	262	128	17
NA4	1,054	299	74
SE1	34,222	2,269	152
SE2	56,638	2,078	132
SE3	3,782	729	97
SE4	43,573	2,431	152
SE5	1,949	667	104
SE6	270	104	33
All	318,646	7,195	194

Largest IXP finds unused space in the most different countries

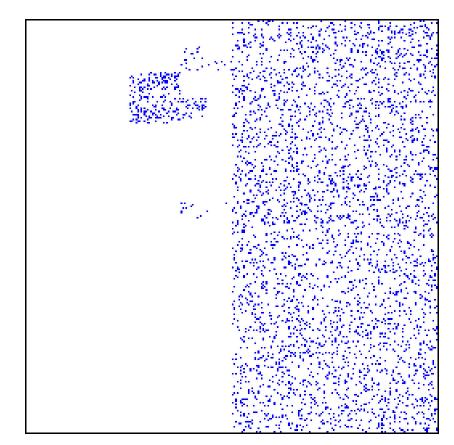
• Vantage point diversity:


	#Inferred						
IXP	meta-telescope	#ASes	#Coun	tries			
	prefixes						
CE1	397,000	8,529		2nd	largest in the		
CE2	21,340	1,597		most different ASes			U
CE3	61,607	3,982					
CE4	2,178	455					
NA1	395,585	8,960		198			
NA2	12,489	919		102			
NA3	262	128		17			
NA4	1,054	299		74			
SE1	34,222	2,269		152			
SE2	56,638	2,078		132			
SE3	3,782	729		97			
SE4	43,573	2,431		152			
SE5	1,949	667		104			
SE6	270	104		33			
All	318,646	7,195		194			

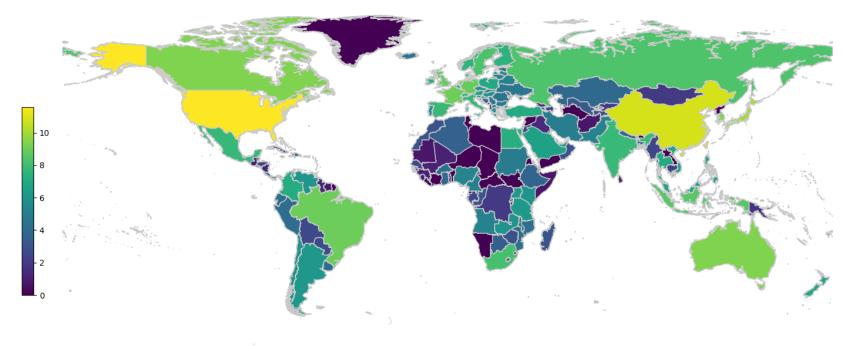
- Validation:
 - Inferred IP address space of collaborating telescope



- Validation:
 - Inferred IP address space of collaborating telescope



Found known telescopes


• Found unused space

• Where are the most meta-telescope prefixes?

Dark /24 Global distribution

log scale dark /24s

• Even in countries that no telescopes have ever been reported about

• Top scanned ports overall: 23 (telnet), 22 (SSH), 80 / 8080 (HTTP)

Port Rank	Telescopes		
	TUS1	TEU1	TEU2
#1	23	22	23
#2	6379	80	22
#3	22	443	80
#4	80	8080	6379
#5	443	3389	445
#6	8080	5555	25565
#7	25565	60023	443
#8	5555	81	8080
#9	3389	8443	8090
#10	60023	2375	3389

<u>0 2</u>

Port Rank	Telescopes		
	TUS1	TEU1	TEU2
#1	8080	23	23
#2	23	0	22
#3	2083	22	80
#4	9001	53920	445
#5	1604	445	6379
#6	9480	80	0
#7	443	3389	5060
#8	143	5555	8088
#9	5900	49680	8090
#10	6000	8080	8080

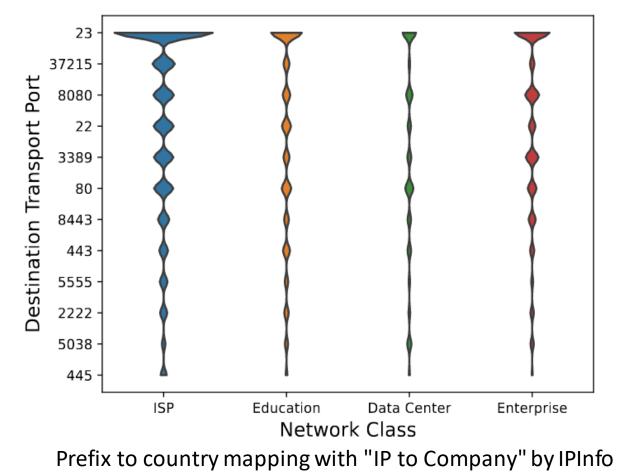
• Top scanned ports overall: Overlap

 $\mathbb{Q}_{\mathbb{R}_{1}}$

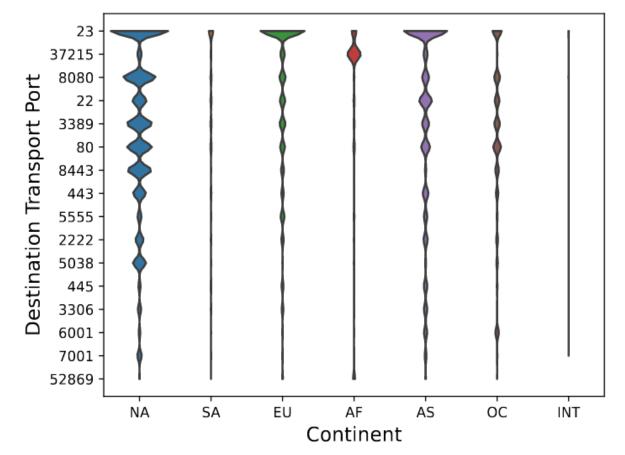
Port Rank	Telescopes		
	TUS1	TEU1	TEU2
#1	23	22	23
#2	6379	80	22
#3	22	443	80
#4	80	8080	6379
#5	443	3389	445
#6	8080	5555	25565
#7	25565	60023	443
#8	5555	81	8080
#9	3389	8443	8090
#10	60023	2375	3389

Port Rank	Telescopes		
	TUS1	TEU1	TEU2
#1	8080	23	23
#2	23	0	22
#3	2083	22	80
#4	9001	53920	445
#5	1604	445	6379
#6	9480	80	0
#7	443	3389	5060
#8	143	5555	8088
#9	5900	49680	8090
#10	6000	8080	8080

• Top scanned ports overall: Filtered ports visible

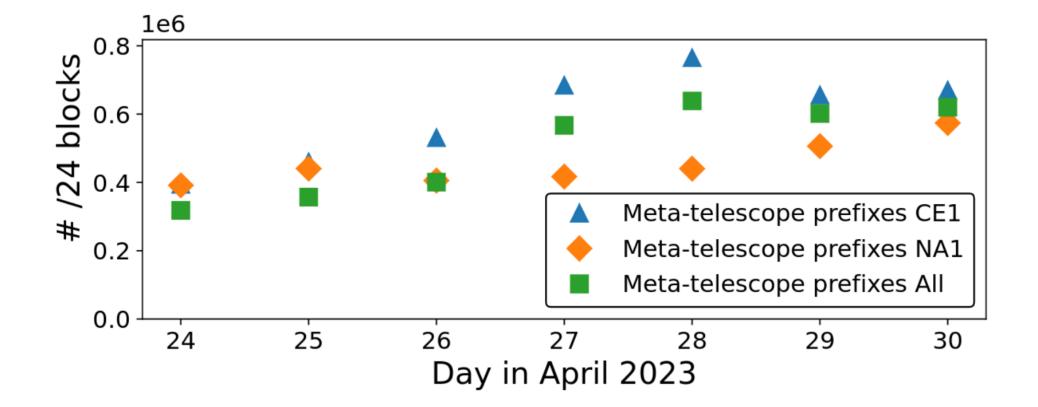

Port Rank	Telescopes			
	TUS1	TEU1	TEU2	
#1	23	22	23	
#2	6379	80	22	
#3	22	443	80	
#4	80	8080	6379	
#5	443	3389	445	
#6	8080	5555	25565	
#7	25565	60023	443	
#8	5555	81	8080	
#9	3389	8443	8090	
#10	60023	2375	3389	

Port Rank	Telescopes		
	TUS1	TEU1	TEU2
#1	8080	23	23
#2	23	0	22
#3	2083	22	80
#4	9001	53920	445
#5	1604	445	6379
#6	9480	80	0
#7	443	3389	5060
#8	143	5555	8088
#9	5900	49680	8090
#10	6000	8080	8080



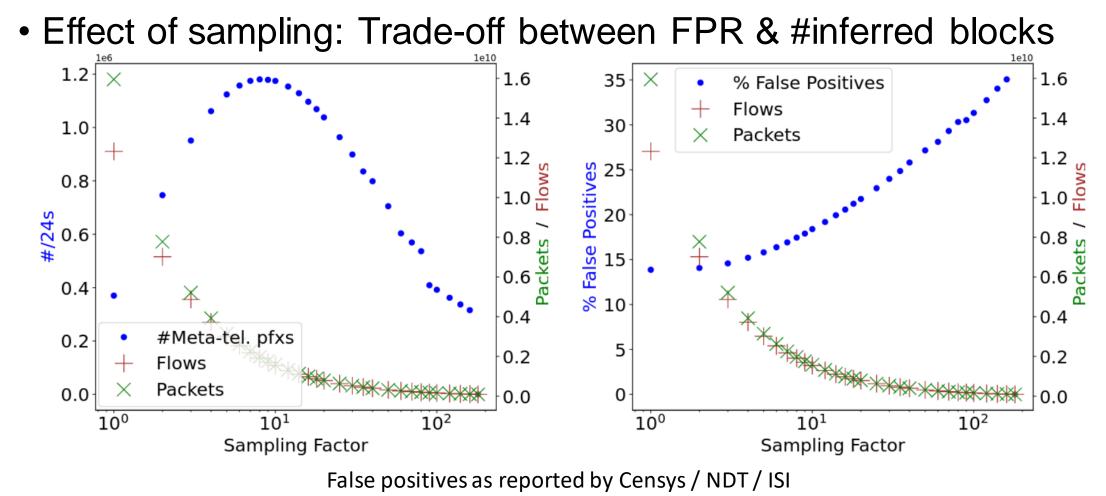
• Top scanned ports by network type

• Top scanned ports by continent

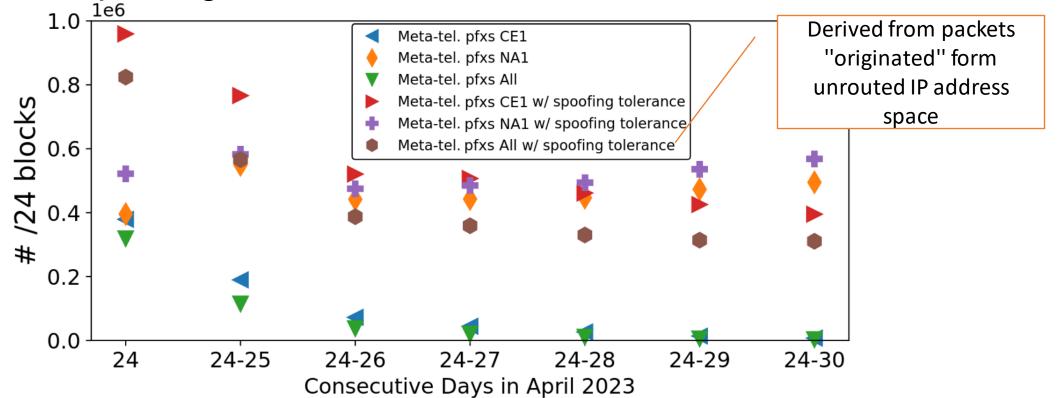


Conclusion

- /24 meta-telescope prefixes detectable with inferred filters
 - Around the globe
 - All network types
- Any network carrying IBR is theoretically suitable for our inference
- Helps to improve Internet security research


Challenges of Telescope Inference

• Effect of time: more unused blocks towards weekend


Challenges of Telescope Inference

• Effect of time

Challenges of Telescope Inference

- Effect of time
- Effect of sampling
- Effect of spoofing: eliminates inferred blocks over time

