

ROSE-T: Making MANRS Compliance Simple (And Automatic!)

Mariano Scazzariello^{*}, Antonio Prado⁺, Tommaso Caiazzi[‡],

* KTH Royal Institute of Technology, Sweden
 * "G. D'Annunzio" University, Italy
 * Roma Tre University, Italy

Why is Routing Security Crucial Nowadays?

Cyber Threats

Business Continuity

Sensitive Data

Why is Routing Security Crucial Nowadays?

MANRS Guidelines For Network Operators

Coordination

Network operators maintain globally accessible up-to-date contact information

Global Information

Network operators must publicly document their routing policies, ASNs and prefixes

Anti-Spoofing

Prevent packets with spoofed source IP address from entering or leaving the network

Filtering

Prevent propagation of incorrect routing information

MANRS Guidelines For Network Operators

Coordination

Network operators maintain globally accessible up-to-date contact information

Global Validation

How Can a Network Operator Ensure the MANRS Compliance?

Anti-Spoofing

Prevent packets with spoofed source IP address from entering or leaving the network

Filtering

Prevent propagation of incorrect routing information

How Can a Network Operator Ensure the MANRS Compliance?

Coordination

Global Validation

Anti-Spoofing

Filtering

No tool to automatically verify MANRS compliance!

Operators have to check their configurations and routing policies **manually** or with **minimal aid**

ROSE-T: ROuting SEcurity Tool

The first **open-source** tool to automatically verify MANRS compliance

Trust No One approach

Run ROSE-T locally to perform the self-assessment of the configuration

Gather Candidate Information Verify Their Correctness for "Global Information"

Verify that the networks announced to transits are in the IRR Entry

Verify that the networks in the IRR Entry are announced to transits

Exploit what Batfish does best: **parsing vendor configurations**

Analyze the Configuration Reconstruct the Neighbours Relationships

Agnostic Format

Gather Parse Emulate

Verify

Analyze the Configuration Reconstruct the Neighbours Relationships

Intermediate Representation

ROSE-T also supports multi-hop peerings!

Emulate the Minimal Network Topology Behave as Close as Possible to the Real One

Emulate the Minimal Network Topology Behave as Close as Possible to the Real One

Emulate the Minimal Network Topology Behave as Close as Possible to the Real One

Runnable Network Scenario

Emulate the Minimal Network Topology Behave as Close as Possible to the Real One

ROSE-T can easily be extended to support other vendors

Verify "Anti-Spoofing" and "Filtering" On the Emulated Network

Anti-Spoofing

Verify "Anti-Spoofing" and "Filtering" On the Emulated Network

Anti-Spoofing

For each Provider:

1. Insert a Client

Verify "Anti-Spoofing" and "Filtering" On the Emulated Network

Anti-Spoofing For each Provider:

- 1. Insert a Client
- 2. Assign IPs (v4/v6) to each Client

Carefully choose subnets that are correctly announced and reachable

Verify "Anti-Spoofing" and "Filtering" On the Emulated Network

Anti-Spoofing

For each Provider:

- 1. Insert a Client
- 2. Assign IPs (v4/v6) to each Client

Carefully choose subnets that are correctly announced and reachable

Select a non-overlapping network for the "Internet" host

Verify "Anti-Spoofing" and "Filtering" On the Emulated Network

scapy

Anti-Spoofing

- 1. Insert a Client
- 2. Assign IPs (v4/v6) to each Client
- 3. Send the spoofed ICMP packet

Gather	
Parse	
Analyze	
Emulate	

Verify "Anti-Spoofing" and "Filtering" On the Emulated Network

scapy

Anti-Spoofing

- 1. Insert a Client
- 2. Assign IPs (v4/v6) to each Client
- 3. Send the spoofed ICMP packet

Gather
Parse
Analyze
Emulate

Verify "Anti-Spoofing" and "Filtering" On the Emulated Network

Anti-Spoofing

- 1. Insert a Client
- 2. Assign IPs (v4/v6) to each Client
- 3. Send the spoofed ICMP packet

Gather	
Parse	
Analyze	
Emulate	

Verify "Anti-Spoofing" and "Filtering" On the Emulated Network

Anti-Spoofing

- 1. Insert a Client
- 2. Assign IPs (v4/v6) to each Client
- 3. Send the spoofed ICMP packet

Gather
Parse
Analyze
Emulate

Verify "Anti-Spoofing" and "Filtering" On the Emulated Network

Anti-Spoofing

- 1. Insert a Client
- 2. Assign IPs (v4/v6) to each Client
- 3. Send the spoofed ICMP packet

Gather	
Parse	
Analyze	
Emulate	

Verify "Anti-Spoofing" and "Filtering" On the Emulated Network

Anti-Spoofing

- 1. Insert a Client
- 2. Assign IPs (v4/v6) to each Client
- 3. Send the spoofed ICMP packet

Gather
Parse
Analyze
Emulate

Conclusions

The **ROSE-T** tool:

- Implements the **first tool** to **automatically** verify MANRS compliance
- Allows network operators to test their configurations without relying on manual and error-prone procedures
- Reduces the time for MANRS adoption that would lead to a more secure global routing infrastructure

Future Work

- Extend verification to multiple routers
- Currently, ROSE-T implements the verification of Network Operators Actions
 - Expand the support to IXPs and CDNs Verification
- ROSE-T aims to verify networks beyond MANRS...
 - Verify RPKI deployments
 - Additional features (*e.g.*, ASPA validation)
- Release a verifiable code to certify MANRS compliance

Contacts

Mariano Scazzariello

KTH Royal Institute of Technology

Antonio Prado

"G. D'Annunzio" University

Tommaso Caiazzi

Roma Tre University

