
Roughtime: Securing time for IoT devices

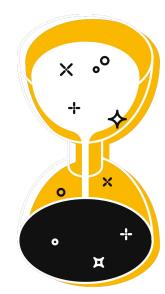
Christer Weinigel, Netnod

Why accurate time is important

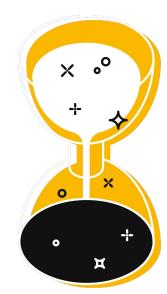
- Many security critical protocols need accurate time
 - DNSSEC, secure domain name lookups
 - TLS, the basis of many other protocols
 - HTTPS, everything on the web
 - SMTPS, IMAPS, POP3S, secure mail
 - Accuracy requirement: within a few minutes or hours
 - Risks of not having accurate time
 - Fall back to insecure algorithms
 - Use old (maybe leaked) information
- The application itself might need time
 - Example: electronic door lock
 - May need more accurate time than minutes or hours

Keeping time

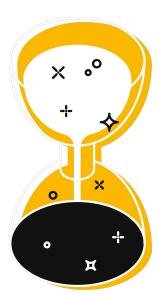
- All devices can keep time
 - \circ When powered on
- But not when powered off
 - IoT devices may not have a Real Time Clock (RTC)
 - Raspberry Pi has RTC hardware, but no battery backup by default
 - "Shipping mode"
 - Even with a battery the clock will not run before first power on because the battery is not connected
- "Ten year on the shelf problem"
 - A device can sit on a shelf for a long time before being turned on


Getting time over the network

- NTP (Network Time Protocol)
 - Lacks security
- NTS (Network Time Security)
 - Adds security
 - Bootstrapping problem
 - NTS depends on TLS
 - Which depends on having accurate time
 - Heavyweight, not suited for resource constrained devices
- Others (e.g. HTTP/HTTPS date header)
 - No security, or depends on TLS and thus has the bootstrapping problem
- What if a time server fails or is compromised?
 - A common configuration for NTP is to use only one server
 - Single point of failure


Possible solution: Roughtime

- Protocol is an IETF Draft
 - A. Malhotra, A. Langley, W. Ladd, M. Dansarie
- Started out as a way to solve the bootstrapping problem
 - Secure
 - \circ $\,$ Was not intended to replace NTP $\,$
 - Only 10 second accuracy
 - Fairly low CPU usage and small memory footprint


Roughtime: concepts

- Uses Ed25519 signatures, Merkle tree
- Hardcoded public keys
 - No bootstrapping problem
 - This is a trade off which turns it into a key distribution problem
- Client asks many servers for time
 - Requires consensus
 - Removes single point of failure
- Intended for devices where the server list can be updated
 - Or part of a firmware update
- These concepts could be used with other time protocols

Roughtime: additional neat ideas

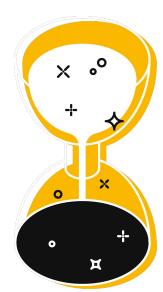
- A 32 byte nonce from the client is signed together with the timestamp
 - This is necessary for security anyway and is basically free
 - Allows signing of any document with a timestamp
 - A document can be the signed timestamp from another roughtime server
 - This can provide proof of misbehaving roughtime servers
 - Allows for accountability / auditing of roughtime servers
- Merkle tree reduces CPU load on the server
 - Ed25519 signing is a costly operation
 - Merkle tree spreads cost over multiple requests

Roughtime: evolution

- It is now a decent generic time protocol
 - With significantly better accuracy than 10 seconds
 - Microsecond resolution
 - Which is secure (NTP is not)
 - Which can run on resource constrained clients (NTS is rather heavyweight)
 - Which still solves the bootstrapping problem


Roughtime: complexity

- Some of these new features conflict with the original goals
 - Microsecond accuracy of timestamps
 - Handles leap seconds and leap smearing
 - Required for sub second accuracy
 - Has support for multiple timescales
 - TAI Temps Atomique International time without leap seconds
 - UT1 basically solar time astronomical time
 - Not necessary if only 10 second accuracy is needed


Next steps

- Roughtime development has stalled
 - RIPE community funded project to revive it!
- Going forward
 - Kickstart work on protocol
 - Collect requirements
 - What do we need to secure time on IoT devices?
 - Getting community involvement and feedback
 - Update draft based on requirements
 - Add missing features, maybe drop unnecessary features
 - Update implementations
 - Hackathon
 - Submit Roughtime to IETF RFC Editors

Resources

- Roughtime Draft
 - <u>https://datatracker.ietf.org/doc/html/draft-ietf-ntp-roughtime</u>
- Working client implementation of draft version 4, 5 and 7
 - https://vadarklockan.readthedocs.io
- Roughtime servers
 - Netnod: sth1.roughtime.netnod.se, sth2.roughtime.netnod.se (v7)
 - Marcus Dansarie: roughtime.se (v7)
- Mailing list: "proto-roughtime"
- Blog posts with background about Roughtime
 - <u>https://blog.cloudflare.com/roughtime/</u>
- Contact me: wingel@netnod.se

