

Evaluating DNS Resiliency and Responsiveness with Truncation, Fragmentation and DoTCP Fallback

Pratyush Dikshit | CISPA Helmholtz Center for Information Security, DE Mike Kosek, Nils Faulhaber | Technical University of Munich, DE Jayasree Sengupta, Vaibhav Bajpai | CISPA Helmholtz Center for Information Security, DE

Published at IFIP Networking Conference, June 2023

RIPE87, Rome Plenary (Onsite) | 28 November 2023

Overview

Truncation

When DNS responses over UDP exceed the buffer size limit (due to DNSSec/IPv6), **truncation bit (TC) is set**. This signals the resolvers and clients that the message could not be transferred correctly.

DNS Flag Day, 2020

This is an event connecting important DNS providers to react to current research and new developments in the ecosystem. It is supported by the DNS Operations Analysis and Research Center (DNS-OARC).

"default in the DNS software should reflect the minimum safe size -1232B"

Extension Mechanisms of DNS (EDNS)

Buffer **sizes ranging from (512-4096)B** over DoUDP.

EDNS is also used for sending general information from resolvers to name servers about clients' geographic location in the form of the EDNS Client Subnet (ECS) option

Fragmentation

IPv4 allows fragmentation, which **divides the datagram into pieces**. Each piece is small enough to pass over the link it is fragmented for, using the MTU parameter configured for that interface.

The IPv6 sender performs fragmentation at the source.

DNS-over-UDP (DoUDP)

DNS-over-TCP (DoTCP)

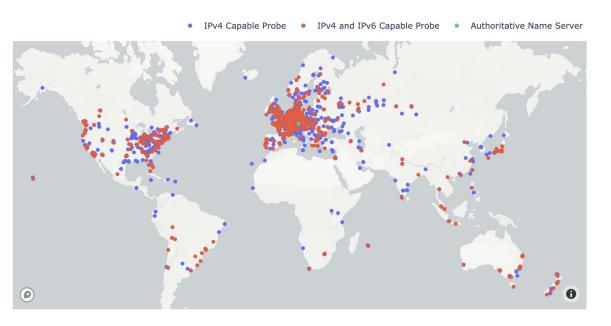
Limited Payload Size (512B) -> Truncation	Unlimited Payload Size -> No Truncation
Introduction of EDNS -> Larger Buffer Sizes	Path MTU Discovery -> Fragmentation avoidance
Fragmentation -> Default Buffer Size: 1232B	Fallback option

- DoTCP is mandatory for hosts
- Introduction of EDNS (to 4096 bytes)
- DNS Flag Day 2020 recommended 1232 bytes of UDP buffer size

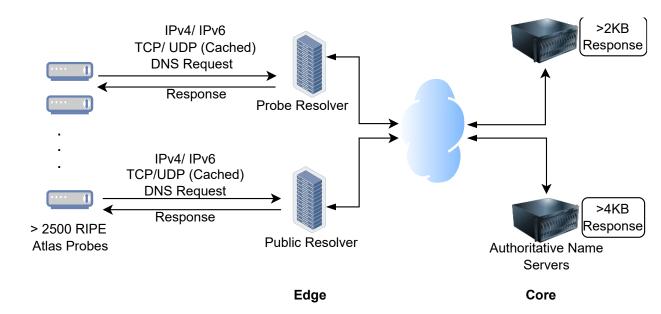
Research Questions and Findings

Goals:

- Investigate DNS Resiliency
- Whether DNS service providers have adopted the DNS Flag Day 2020 recommendations

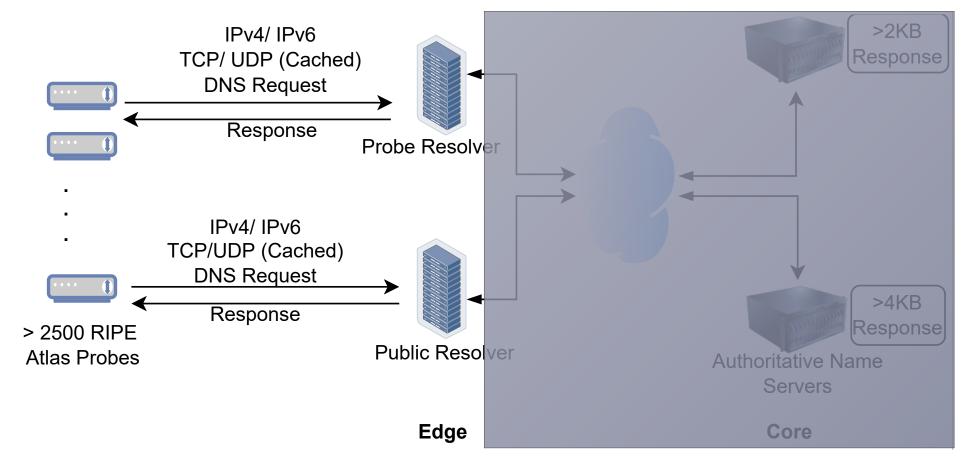

Questions:

- How resilient is DoTCP and DoUDP over IPv4 and IPv6?
- What is the scale of usage and performance of both DoTCP and DoUDP?
- Which buffer sizes are currently in use in DNS traffic around the globe?

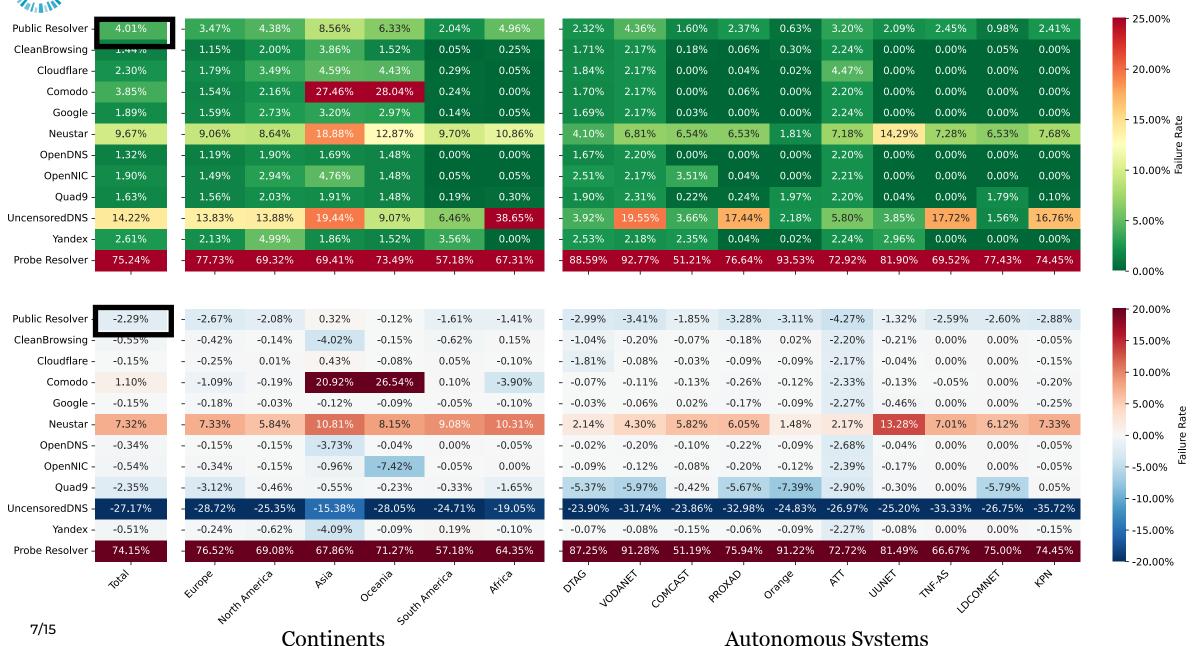

Findings:

- DoTCP tends to fail less often than DoUDP over IPv4
- Several Public DNS resolvers still lack adoption to the DNS Flag Day 2020 recommendations

Methodology


- Probe (versions 3 and 4) with home-tag
- Probes supporting IPv4/IPv6 or both
- •2527 globally distributed RIPE Atlas probes
- Probe Density:
 - −70% in Europe
 - -12% in North America
 - -6% in Asia and 3% in Oceania

- RIPE Atlas Probes communicate the DNS requests with the Edge (Probe and Public Resolvers) and with the Core (authoritative NSes) using IPv4 and IPv6.
- Cached DNS responses are sent by the Edge, while uncached DNS responses (2KB and 4KB) are sent by the Core


Methodology (Evaluation from the Edge)

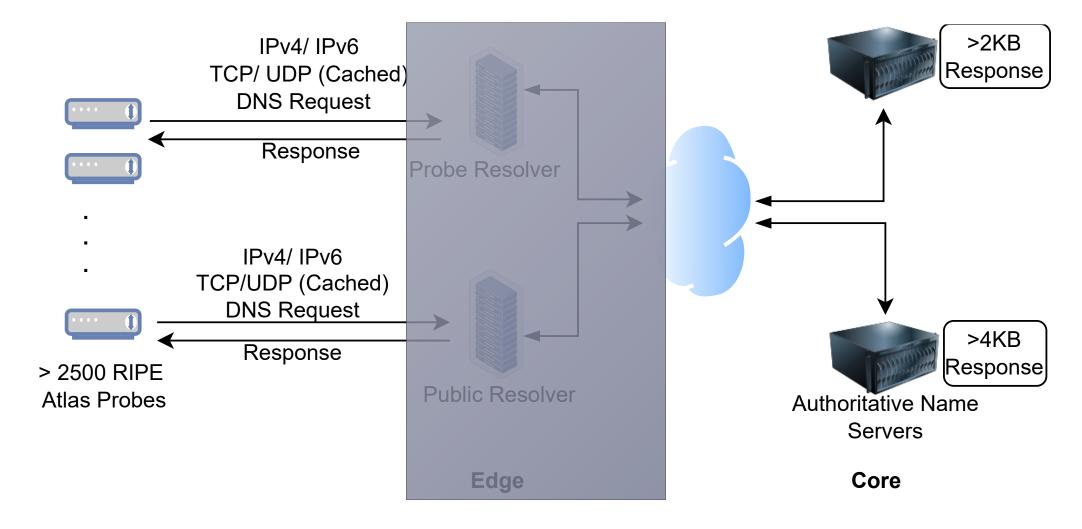
One week, 10 blocks every day, 10 requests per block per resolver

esolver

Findings (Evaluation from the Edge - Failure Rate over IPv4)

DoTCP

Findings (Evaluation from the Edge - EDNS(0))


		512	1232	4096	none	other
CleanBrowsing	IPv4	97.04%	0.63%	1.46%	0.57%	0.30%
	IPv6	99.41%	0.11%	0.48%	0.01%	0.00%
Cloudflare	IPv4	0.20%	97.43%	1.45%	0.53%	0.40%
Cloudilare	IPv6	0.11%	99.44%	0.44%	0.01%	0.00%
Comodo	IPv4	0.18%	0.64%	98.30%	0.57%	0.30%
Comodo	IPv6	-	-	-	-	-
Coogle	IPv4	96.82%	0.78%	1.47%	0.58%	0.34%
Google	IPv6	99.22%	0.10%	0.67%	0.00%	0.01%
Neustar	IPv4	0.18%	0.64%	98.32%	0.56%	0.30%
Neustar	IPv6	0.10%	0.10%	99.79%	0.00%	0.00%
OpenDNS	IPv4	0.18%	0.63%	98.20%	0.57%	0.43%
OpenDNS	IPv6	0.10%	0.11%	99.79%	0.00%	0.00%
OpenNIC	IPv4	0.18%	97.53%	1.42%	0.56%	0.30%
Openide	IPv6	0.11%	99.43%	0.47%	0.00%	0.00%
Quad9	IPv4	19.15%	55.47%	1.48%	23.55%	0.35%
Quau	IPv6	20.98%	62.09%	0.47%	16.46%	0.00%
UncensoredDNS	IPv4	0.30%	95.87%	2.39%	0.96%	0.49%
Officensoreading	IPv6	0.13%	99.29%	0.57%	0.01%	0.00%
Yandex	IPv4	0.19%	0.64%	98.04%	0.75%	0.39%
	IPv6	0.11%	0.10%	99.79%	0.00%	0.00%
Overall	IPv4	24.97%	36.12%	35.30%	3.24%	0.36%
O VCI all	IPv6	24.86%	38.81%	34.46%	1.87%	0.00%

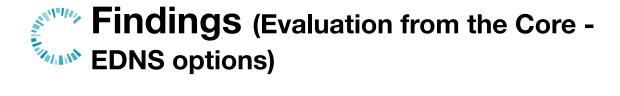
Takeaways:

- 4/10 resolvers use 1232B buffer size
- 4/10 resolvers use very large buffer size (4096B)
- The differences in the buffer sizes of IPv4 and IPv6 are low (<3.5%) except Quad9
- 1/4 1/5 times Quad9 does not use EDNS

Methodology (Evaluation from the Core)

• One week, 10 blocks every day, 10 requests per block per resolver

Resolver



Findings (Evaluation from the Core - EDNS(0))

		512.0	1232.0	1400.0	1410.0	1452.0	4096.0	other
Clear Duescoin a	IPv4	0.11%	98.24%	0.45%	0.05%	0.64%	0.36%	0.16%
CleanBrowsing	IPv6	0.01%	99.47%	0.21%	0.00%	0.07%	0.05%	0.19%
Cloudflare	IPv4	0.36%	0.65%	0.46%	0.04%	98.04%	0.30%	0.16%
Cioudilare	IPv6	0.01%	0.26%	0.21%	0.00%	99.38%	0.04%	0.10%
Comodo	IPv4	0.11%	0.70%	0.48%	0.05%	0.67%	95.21%	2.78%
Comodo	IPv6	-	-	-	-	-	-	-
Google	IPv4	0.22%	0.78%	97.86%	0.05%	0.64%	0.27%	0.19%
Google	IPv6	0.02%	0.26%	99.41%	0.00%	0.06%	0.14%	0.10%
Neustar	IPv4	0.04%	0.70%	0.48%	0.05%	0.63%	97.45%	0.66%
reustai	IPv6	0.02%	0.31%	0.23%	0.00%	0.06%	98.79%	0.60%
OpenDNS	IPv4	0.08%	0.61%	0.53%	97.68%	0.59%	0.32%	0.19%
Орсполо	IPv6	0.01%	0.26%	0.22%	99.30%	0.07%	0.04%	0.10%
OpenNIC	IPv4	0.06%	98.29%	0.45%	0.05%	0.59%	0.37%	0.18%
Opemaic	IPv6	0.01%	99.56%	0.23%	0.00%	0.06%	0.05%	0.10%
Quad9	IPv4	0.07%	98.05%	0.51%	0.05%	0.70%	0.40%	0.21%
Quaus	IPv6	0.01%	99.54%	0.22%	0.00%	0.08%	0.04%	0.11%
UncensoredDNS	IPv4	2.68%	93.15%	1.14%	0.12%	1.49%	0.97%	0.45%
Chechsoreabits	IPv6	1.46%	97.91%	0.34%	0.00%	0.08%	0.07%	0.15%
Yandex	IPv4	0.03%	0.65%	0.56%	0.04%	0.69%	92.86%	5.16%
241144712	IPv6	0.00%	0.26%	0.22%	0.00%	0.06%	94.31%	5.14%
Overall	IPv4	0.24%	39.74%	12.22%	11.83%	12.34%	22.78%	0.85%
Ofcium	IPv6	0.13%	42.09%	11.70%	11.51%	11.49%	22.33%	0.75%

Takeaways:

- •3/10 resolvers show large buffer sizes which may lead to fragmentation attacks
- •4/10 resolvers use 1232B buffer size
- •Resolvers exhibit preferred buffer sizes >90% of cases

		EDNS	Cookie	ECS
CleanBrowsing	IPv4	99.93%	0.22%	0.10%
	IPv6	99.91%	0.05%	0.04%
Cloudflare	IPv4	99.94%	0.32%	0.10%
	IPv6	100.00%	0.05%	0.05%
Comodo	IPv4	98.10%	0.33%	0.11%
Comodo	IPv6	-	-	===
Coorle	IPv4	99.93%	0.31%	14.23%
Google	IPv6	100.00%	0.16%	12.53%
Neustar	IPv4	99.93%	0.23%	0.10%
Neustar	IPv6	99.93%	0.05%	0.04%
OnenDNC	IPv4	99.94%	0.22%	0.10%
OpenDNS	IPv6	100.00%	0.05%	0.04%
OpenNIC	IPv4	99.93%	0.22%	0.11%
	IPv6	100.00%	0.05%	0.05%
O 40	IPv4	99.93%	0.24%	0.13%
Quad9	IPv6	100.00%	0.06%	0.03%
UncensoredDNS	IPv4	99.84%	94.62%	0.24%
Uncensureading	IPv6	100.00%	99.06%	0.06%
Yandex	IPv4	99.93%	0.22%	0.11%
Talluex	IPv6	100.00%	0.05%	0.04%
Overall	IPv4	99.93%	4.80%	1.81%
Overall	IPv6	99.98%	7.91%	1.49%

About:

- EDNS Client Subnet (ECS) allows clients to pass the network information through the chain of DNS queries from the DNS client to name servers
- The EDNS Cookie option is a lightweight security mechanism for DoUDP. Client and server exchange cookies of a minimum length of 64-bit allowing the communication parties to identify spoofed requests

Takeaways:

- All resolvers use EDNS (0) >99% of cases
- Small difference in usage rates between IPv4 vs IPv6
- UncensoredDNS uses the EDNS Cookie option in the majority while all other resolvers send cookies in <=0.33% of their requests
- Google mostly uses ECS. The other ones send Client Subnet information in <=0.24% of their requests

Failure rates of DoUDP > DoTCP over both IPv4 and IPv6 while evaluating from the edge and the core as well.

3/10 and 4/10 resolvers announce very large EDNS(0) buffer sizes (4096B) from the Core and Edge respectively, which may potentially cause fragmentation.

The **resolvers exhibit one preferred buffer size** for >95% of the cases both from the Edge and the Core.

DNS-over-QUIC (DoQ) (RFC 9250) solves fragmentation by means of the QUIC protocol (RFC 9000), thereby supporting increased DNS message sizes.

-paper-