@webrobotics

IRRd 4 O NTT

Internet Routing Registry daemon version 4 is an IRR database server,
processing IRR objects in the RPSL format. Its main features are:

« Validating, cleaning and storing IRR data, and extracting information for
iIndexing.

» Providing several query interfaces to query the IRR data.
Mirroring other IRR databases using file imports and NRTM.

Massimo Candela | massimo@ntt.net | @webrobotics

mailto:massimo@ntt.net

A bit of history O NTT

e Commissioned in 2018 by NTT
o Developed by Sasha Romijn
o Open source
m https://qithub.com/irrdnet/irrd

O Support also received by: ARIN, Merit, RIPE NCC, LACNIC, Netnod and
Internetstiftelsen

e Used by many:
NTT (NTTCOM)
Merit (RADb)
ARIN

LACNIC

and more...

o O O O O

Massimo Candela | massimo@ntt.net | @webrobotics

mailto:massimo@ntt.net
https://github.com/irrdnet/irrd

IRRd Milestones @ NTT

e 4.0 (May 2019)
o Feature parity with IRRd v2/3 with test coverage

o 4.1 (Sept2020)
o Performance improvements
o Scope filtering
o RPKIl-aware mode

o 4.2 (Sept2021)
o GraphQL query interface
o API for retrieving and creating objects

e 4.3 (June 2023)
o Source priority option

Massimo Candela | massimo@ntt.net | @webrobotics

mailto:massimo@ntt.net

What we addressed in 4.4 @ NTT

e Total refactoring of authentication and authorization
o Split authentication from maintainer objects
o Introduced scopes
o Introduced “superusers”
o Introduced 2FA
o Introduced API keys

m for programmatic access with the API

m possibility to assign scopes

Massimo Candela | massimo@ntt.net | @webrobotics

mailto:massimo@ntt.net

What we addressed in 4.4 @ NTT

e Safer Person/Role/mntner data handling

©)

©)

©)

They can be deleted only if not referenced anywhere (since 4.0)
Superusers can now delete and recreate whenever they want
To save an object, you need to fix all references

nic-handles/maintainers name cannot be reused

m If everusedin 4.4, even if no longer visible in the data

m [f still visible in the data

Massimo Candela | massimo@ntt.net | @webrobotics

mailto:massimo@ntt.net

What we addressed in 4.4 @ NTT

e Data preloading
o Resolution of as-sets and route-objects is precalculated and

stored in memory
m including mbrs-by-ref

o 3 to 9x times faster

Massimo Candela | massimo@ntt.net | @webrobotics

mailto:massimo@ntt.net

4.3 vs. 4.4 performance

) time echo '!iAS2914:AS-GLOBAL,1' | nc
localhost 43 |wc -c

662778

0.00s user 0.01ls system 0% cpu 8.167 total

) time echo '!aAS-SEABONE' | nc localhost 43|wc
e

39318385

wc -c¢ 0.00s user 0.19s system 0% cpu 30.176
total

O NTT

) time echo '!iAS2914:AS-GLOBAL,1' | nc
localhost 43 |wc -c

662769

0.00s user 0.00s system 0% cpu 0.943 total

) time echo '!aAS-SEABONE' | nc localhost 43|wc
-c

39318366

wc -c¢ 0.02s user 0.17s system 3% cpu 5.098
total

Massimo Candela | massimo@ntt.net | @webrobotics

mailto:massimo@ntt.net

Next phase of IRRd 4 O NTT

e SSO support
o IRRd extended with SSO support through Keycloak, with Keycloak

functioning as an intermediary between IRRd and any external
OAuth/OpenlID system

o ldentity providers can be PeeringDB and RIR accounts

e Even more performance improvement!

e Provide feedback: https://github.com/irrdnet/irrd

Massimo Candela | massimo@ntt.net | @webrobotics

mailto:massimo@ntt.net
https://github.com/irrdnet/irrd

[t’s not just

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

IRRD development
process

Users include several
authoritative operators and
mirrors

IRRD should generally remain
compatible with all these
deployments

Reasonable defaults

Careful design to manage
complexity

Occasional reluctant unusual
features

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

941
942
943

944
945

941
942
943
944
945
946
947
948
949
950

5 EMEEEE docs/admins/configuration.rst [_@ < D [viewed ([J

@@ -941,5 +941,10 @@ Compatibility

performance impact on very large responses.

|br| sx«Defaultxx: " “false' ', IPv6 members included.

|br| *xChange takes effectxk: after SIGHUP, for all subsequent queries.
+ % ~“compatibility.asdot_queries’': if set to "“true'’, origin queries will
+ also accept queries in the (long deprecated) asdot format for AS numbers.
+ In other places, like object attributes, asdot remains invalid.
+ |br| xkDefaultxx: " “false' ', asdot not valid.
+ |br| *kChange takes effectxx: after SIGHUP, for all subsequent queries.

. _RFC8416: https://tools.ietf.org/html/rfc8416

IRRD is a large e 17.000 lines
regular code
e 15.000 lines

project

tests
e 6.000 lines
documentation

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

Data flows in IRRD

Loading IRR data:

Authoritative via
mail, HTTPS AP,
web form

NRTM v3

NRTM v4

Various file imports
Synthetic NRTM
RPKI pseudo-IRR
Strict and non-strict

Enrichment/filtering:

Object suppression
for RPKI, scope
filtering, route
object preference
Maintainer
suspension

Publication:

- Whois on TCP 43

- Whois HTTPS API

- GraphQL HTTPS

- NRTMv3

- NRTM v4

- Event stream with
HTTPS JSONL
download and
WebSockets

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

Querying
beyond
plain TCP

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

S telnet rr.ntt.net 43

Trying 2001:418:3ff:5::192:40...
Connected to rr.ntt.net.

Escape character 1is 'A]'.

(|

1aAS-RELIABLYCODED

A52

2001:678:d44::/48 2001:678:d44:1::/64 2.57.252.0/24
C

1AS2914:AS-GLOBAL,1

A671808

AS1 AS10 AS100 AS10000 AS1060001

16 IRRD style queries, 6 RIPE queries, 5 flags

Y curl
'https://irrd.as213279.net/vl/whois/?g=!0oRIPE-NCC-MNT'

inetnum: 84.205.64.0 - 84.205.95.255

netname: RIPE-NCC-RIS-BEACON

org: ORG-RIEN1-RIPE

country: EU

remarks: RIPE NCC RIS anchors and beacons for BGP
studies

admin-c: DUMY-RIPE

Exact same query interface over HTTPS

query {
rpslObjects (mntBy: "DEMO-MNT") {

rps LPk
mntBy
source
on RPSLAsSet {
members

on RPSLRouteSet {
members

¥
¥
¥

GraphQL query

"data": {
"rpslObjects": [
{

"rpsPk": "AS-EXAMPLE",

"mntBy": ["DEMO-MNT"],

"source'": "RIPE",

"members'": ["AS64500", "AS64501", "AS-EXAMPLE2"]

¥
]
¥
¥

GraphQL response

{rpslObjects(rpslPk: "2001:7FB::/32", sources:
["RIPE"]) {
rps LPk
source
mntByObjs {
rps LPk
adminCObjs {
. on RPSLPerson {
address

¥
¥

GraphQL query

{"data": {
"rpslObjects": [

{
"rpslPk": "2001:7FB::/32",
"source'": "RIPE",
"mntByObjs": [
{

"rps1Pk": "RIPE-NCC-END-MNT",
"adminCObjs": [
{
"address": [
"RIPE Network Coordination Centre",
"P.0O. Box 10096",

GraphQL response

{
gl: rpslObjects(
mntBy: "ONE-MNT",
sources: ["RIPE"]) {
rps LPk
source
}
g2: rpslObjects(
ipLessSpecificOnelLevel: '192.0.2.0/24",
rpkiStatus: valid) {
rps LPk

¥
¥

Combine queries

o ° + GraphiQL
2v rpslobjects(mntBy: "RIPE-NCC-MNT", sources "RIPE"

rpslPk o v “"data":
source v "rpslObjects":
Sv . on RPSLAsSet « {
members "rpslPk": "AS2121",

"source": "RIPE"

"rpslPk": "AS3333",
"source": "RIPE"

"rpslPk": "2.0.193.IN-ADDR.ARPA",
"source": "RIPE"

"rpslPk": "AMSTERDAM.RIPE.NET",
"source": "RIPE"

"rpslPk": "193.0.0.0/21AS3333",
"source": "RIPE"

GraphQL interactive playground

< mntByObjs

rpslObjects il : u
2 rpslObjects(
© Type 3 rps1Pk: ?001:7“3::/32 ;
bv sources: ["RIPE"])
[RPSLObject!] 5 rps1Pk
6 source
& Arguments 7v mntByObjs {
adminC: [String!] 6
9 }
mbrsByRef: [String!] 10 v journal {
11 operation
memberOf: [String!] 12 timestamp

members: [String!] 13 ; origin
mntBy: [String!] 15 }
mpMembers: [String!]

objectClass: [String!]

origin: [String!]

person: [String!]

role: [String!]

GraphQL help

> curl -d '"{"query": "{asSetPrefixes(setNames:
[\"AS-RIPENCC\"]) {rpslPk prefixes}}"}' -H
"Content-Type: application/json"
https://irrd.as213279.net/graphql/

{"data":{"asSetPrefixes": [{"rpslPk":"AS-RIPENCC","pref

ixes":["2001:7fb:fel4::/48","2001:7fb:fel7::/48","84.2
05.70.0/24",

Tiny layer on top of HTTPS POST

Can I query
X orY from
IRRD?

EHPLORER

IRR explorer shows the routing, IRR and RPKI
status for resources, and highlights potential
issues.

Enter a prefix, IP address, AS number or AS set name.

Prefix, IP, ASN or AS-set

Data source status

90% of IRRexplorer is just an IRRD GraphQL frontend

NRTM v/

Near Real Time Mirroring v4

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

Mirroring /
replication

One or two dozen IRRs
Mirroring / replication to access
data from different IRRs in one
place

Allows a single source

for queries

Some run local mirrors for
performance

All based on NRTM v3

RFC2769: Routing Policy System
Replication - no active
implementations

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

“Protocol” is a big word
NRTM v3 Zero integrity or authenticity

checks

Poor scaling, tied to port 43

Potential inconsistency between

FTP dump and NRTM

No consistent charset

Silent desynchronisation

No way to distinguish “in sync”
from “everything is broken”
Many very exciting, silent and
undetectable ways to lose
synchronisation

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

d]ﬁ' aft—ietf— Aujt.hored together with Job
g]_‘()W nrtm Vl|. Snijders, Ed Shryane

and Stavros Konstantaras
Some inspiration from RRDP
JSON-ish files on any HTTPS
endpoint

Signature and hashes for
authenticity

Single publication point and
session IDs for consistency
UTF-8 support

Object format out of scope

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

“In practice, there is no uniformly
implemented standard for RPSL,
but merely rough outlines partially
documented in different places.”

— draft-ietf-grow-nrtm-v4

draft-ietf- Sm.all Upgiate Noti-ﬂc-ation File as
grow nrtm-v4 a kind of index pointing to a

snapshot and (usually) deltas
Snapshot is a full dump of all the
data in an IRR database

Deltas contain changes, batched

into one minute timeframes
Snhapshots and deltas
completely cacheable
JSON / JSON sequences on
HTTPS endpoint

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

Goals and impact

Improved reliability, security
and scalability in mirroring
No (fewer?) silent errors
Scalability may lead to more
open access to NRTM?

If you process dumps or NRTM
with your own code, may need
updates

Probably NRTMv3 will still be
available for quite some time

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

Status and plans

RIPE NCC has a mirror server
implementation in production
IRRD has mirror client in testing
Interoperability achieved for
most features

Some still to be implemented

Reverse direction to be
developed

Draft adopted by IETF GROW
v03 published

My work supported by LACNIC
and RIPE NCC CPF

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

§

@webrobotics

