
Present and future of IRRd

Massimo Candela
Principal Engineer
Global IP Network
massimo@ntt.net
@webrobotics

Sasha Romijn
Reliably Coded
sasha@reliablycoded.nl
@sash@hachyderm.io

Massimo Candela | massimo@ntt.net | @webrobotics

IRRd 4

Internet Routing Registry daemon version 4 is an IRR database server,
processing IRR objects in the RPSL format. Its main features are:
• Validating, cleaning and storing IRR data, and extracting information for

indexing.
• Providing several query interfaces to query the IRR data.
• Mirroring other IRR databases using file imports and NRTM.

mailto:massimo@ntt.net

Massimo Candela | massimo@ntt.net | @webrobotics

 A bit of history

● Commissioned in 2018 by NTT
○ Developed by Sasha Romijn
○ Open source

■ https://github.com/irrdnet/irrd
○ Support also received by: ARIN, Merit, RIPE NCC, LACNIC, Netnod and

Internetstiftelsen
● Used by many:

○ NTT (NTTCOM)
○ Merit (RADb)
○ ARIN
○ LACNIC
○ and more…

mailto:massimo@ntt.net
https://github.com/irrdnet/irrd

Massimo Candela | massimo@ntt.net | @webrobotics

IRRd Milestones

● 4.0 (May 2019)
○ Feature parity with IRRd v2/3 with test coverage

● 4.1 (Sept 2020)
○ Performance improvements
○ Scope filtering
○ RPKI-aware mode

● 4.2 (Sept 2021)
○ GraphQL query interface
○ API for retrieving and creating objects

● 4.3 (June 2023)
○ Source priority option

mailto:massimo@ntt.net

Massimo Candela | massimo@ntt.net | @webrobotics

What we addressed in 4.4

● Total refactoring of authentication and authorization

○ Split authentication from maintainer objects

○ Introduced scopes

○ Introduced “superusers”

○ Introduced 2FA

○ Introduced API keys

■ for programmatic access with the API

■ possibility to assign scopes

mailto:massimo@ntt.net

Massimo Candela | massimo@ntt.net | @webrobotics

What we addressed in 4.4

● Safer Person/Role/mntner data handling
○ They can be deleted only if not referenced anywhere (since 4.0)

○ Superusers can now delete and recreate whenever they want

○ To save an object, you need to fix all references

○ nic-handles/maintainers name cannot be reused
■ If ever used in 4.4, even if no longer visible in the data

■ If still visible in the data

mailto:massimo@ntt.net

Massimo Candela | massimo@ntt.net | @webrobotics

What we addressed in 4.4

● Data preloading

○ Resolution of as-sets and route-objects is precalculated and

stored in memory

■ including mbrs-by-ref

○ 3 to 9x times faster

mailto:massimo@ntt.net

Massimo Candela | massimo@ntt.net | @webrobotics

4.3 vs. 4.4 performance

❯ time echo '!iAS2914:AS-GLOBAL,1' | nc

localhost 43|wc -c

662769

0.00s user 0.00s system 0% cpu 0.943 total

❯ time echo '!iAS2914:AS-GLOBAL,1' | nc

localhost 43|wc -c

662778

0.00s user 0.01s system 0% cpu 8.167 total

❯ time echo '!aAS-SEABONE' | nc localhost 43|wc

-c

39318385

wc -c 0.00s user 0.19s system 0% cpu 30.176

total

❯ time echo '!aAS-SEABONE' | nc localhost 43|wc

-c

39318366

wc -c 0.02s user 0.17s system 3% cpu 5.098

total

mailto:massimo@ntt.net

Massimo Candela | massimo@ntt.net | @webrobotics

Next phase of IRRd 4

● SSO support
○ IRRd extended with SSO support through Keycloak, with Keycloak

functioning as an intermediary between IRRd and any external

OAuth/OpenID system

○ Identity providers can be PeeringDB and RIR accounts

● Even more performance improvement!

● Provide feedback: https://github.com/irrdnet/irrd

mailto:massimo@ntt.net
https://github.com/irrdnet/irrd

It’s not just
port 43

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

IRRD development
process

● Users include several
authoritative operators and
mirrors

● IRRD should generally remain
compatible with all these
deployments

● Reasonable defaults
● Careful design to manage

complexity
● Occasional reluctant unusual

features

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

IRRD is a large
project

● 17.000 lines
regular code

● 15.000 lines
tests

● 6.000 lines
documentation

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

Data flows in IRRD

Loading IRR data:

- Authoritative via
mail, HTTPS API,
web form

- NRTM v3
- NRTM v4
- Various file imports
- Synthetic NRTM
- RPKI pseudo-IRR
- Strict and non-strict

Enrichment/filtering:

- Object suppression
for RPKI, scope
filtering, route
object preference

- Maintainer
suspension

Publication:

- Whois on TCP 43
- Whois HTTPS API
- GraphQL HTTPS
- NRTM v3
- NRTM v4
- Event stream with

HTTPS JSONL
download and
WebSockets

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

Querying
beyond
plain TCP

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

16 IRRD style queries, 6 RIPE queries, 5 flags

$ telnet rr.ntt.net 43
Trying 2001:418:3ff:5::192:40...
Connected to rr.ntt.net.
Escape character is '^]'.
!!
!aAS-RELIABLYCODED
A52
2001:678:d44::/48 2001:678:d44:1::/64 2.57.252.0/24
C
!iAS2914:AS-GLOBAL,1
A671808
AS1 AS10 AS100 AS10000 AS10001 ...

Exact same query interface over HTTPS

❯ curl
'https://irrd.as213279.net/v1/whois/?q=!oRIPE-NCC-MNT'

inetnum: 84.205.64.0 - 84.205.95.255
netname: RIPE-NCC-RIS-BEACON
org: ORG-RIEN1-RIPE
country: EU
remarks: RIPE NCC RIS anchors and beacons for BGP
studies
admin-c: DUMY-RIPE
...

GraphQL query

query {
 rpslObjects(mntBy: "DEMO-MNT") {

rpslPk
mntBy
source
... on RPSLAsSet {

 members
}
... on RPSLRouteSet {

 members
}

 }
}

GraphQL response

{
 "data": {
 "rpslObjects": [
 {
 "rpslPk": "AS-EXAMPLE",
 "mntBy": ["DEMO-MNT"],
 "source": "RIPE",
 "members": ["AS64500", "AS64501", "AS-EXAMPLE2"]
 }
]
 }
}

GraphQL query

{rpslObjects(rpslPk: "2001:7FB::/32", sources:
["RIPE"]) {

rpslPk
source
mntByObjs {

 rpslPk
 adminCObjs {
 ... on RPSLPerson {
 address
 }
 }

}
}

GraphQL response

{"data": {
"rpslObjects": [

 {
 "rpslPk": "2001:7FB::/32",
 "source": "RIPE",
 "mntByObjs": [
 {
 "rpslPk": "RIPE-NCC-END-MNT",
 "adminCObjs": [
 {
 "address": [
 "RIPE Network Coordination Centre",
 "P.O. Box 10096",

Combine queries

{
 q1: rpslObjects(

mntBy: "ONE-MNT",
sources: ["RIPE"]) {
rpslPk
source

 }
 q2: rpslObjects(

ipLessSpecificOneLevel: "192.0.2.0/24",
rpkiStatus: valid) {
rpslPk

 }
}

GraphQL interactive playground

GraphQL help

Tiny layer on top of HTTPS POST

❯ curl -d '{"query": "{asSetPrefixes(setNames:
[\"AS-RIPENCC\"]){rpslPk prefixes}}"}' -H
"Content-Type: application/json"
https://irrd.as213279.net/graphql/

{"data":{"asSetPrefixes":[{"rpslPk":"AS-RIPENCC","pref
ixes":["2001:7fb:fe14::/48","2001:7fb:fe17::/48","84.2
05.70.0/24",
...

Can I query
X or Y from
IRRD?

90% of IRRexplorer is just an IRRD GraphQL frontend

NRTM v4
Near Real Time Mirroring v4

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

Mirroring /
replication

● One or two dozen IRRs
● Mirroring / replication to access

data from different IRRs in one
place

● Allows a single source
for queries

● Some run local mirrors for
performance

● All based on NRTM v3
● RFC2769: Routing Policy System

Replication - no active
implementations

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

NRTM v3
● “Protocol” is a big word
● Zero integrity or authenticity

checks
● Poor scaling, tied to port 43
● Potential inconsistency between

FTP dump and NRTM
● No consistent charset
● Silent desynchronisation
● No way to distinguish “in sync”

from “everything is broken”
● Many very exciting, silent and

undetectable ways to lose
synchronisation

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

draft-ietf-
grow-nrtm-v4

● Authored together with Job
Snijders, Ed Shryane
and Stavros Konstantaras

● Some inspiration from RRDP
● JSON-ish files on any HTTPS

endpoint
● Signature and hashes for

authenticity
● Single publication point and

session IDs for consistency
● UTF-8 support
● Object format out of scope

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

“In practice, there is no uniformly
implemented standard for RPSL,
but merely rough outlines partially
documented in different places.”

– draft-ietf-grow-nrtm-v4

draft-ietf-
grow-nrtm-v4

● Small Update Notification File as
a kind of index pointing to a
snapshot and (usually) deltas

● Snapshot is a full dump of all the
data in an IRR database

● Deltas contain changes, batched
into one minute timeframes

● Snapshots and deltas
completely cacheable

● JSON / JSON sequences on
HTTPS endpoint

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

Goals and impact
● Improved reliability, security

and scalability in mirroring
● No (fewer?) silent errors
● Scalability may lead to more

open access to NRTM?

● If you process dumps or NRTM
with your own code, may need
updates

● Probably NRTMv3 will still be
available for quite some time

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

Status and plans ● RIPE NCC has a mirror server
implementation in production

● IRRD has mirror client in testing
● Interoperability achieved for

most features
● Some still to be implemented
● Reverse direction to be

developed
● Draft adopted by IETF GROW
● v03 published
● My work supported by LACNIC

and RIPE NCC CPF

Sasha Romijn - @sash@hachyderm.io - sasha@reliablycoded.nl

Thank you!
Massimo Candela
Principal Engineer
Global IP Network
massimo@ntt.net
@webrobotics

Sasha Romijn
Reliably Coded
sasha@reliablycoded.nl
@sash@hachyderm.io

